ISSUED BY DRFENSE COUN SET, STITE OF TBNI VS. JOHN T. SCOPES.

This document is for release when it has become completely a part of the court record. It is accepted by newspapers and correspondents with the condition and explicit understanding that it is not to be published or any of its contents referred to in any way until it is definitely released. It may be amended or changed before such release.

STATEMENT BY PRORESSOR HORATIO HACKETT NENMAN:
(Zoologist, University of Chicago)
(Biography..-. He was doan of the colloges of science at that univorsity for noarly sevon years, having charge espocially of promodical and modical students. Ho has beon toaching zoology sinco 1898. He receivod his bachelor's degroe at MeMaster Univorsity, and his doctor's degree at Chicago Univorsity. He has memborships and fello wships in the Amcrican Association for tho Advancoment of Scionce, the Amorican Socioty of Zoologists, otc. Ho hes attractod widosproad attontion in the sciontific world by his studics of exporimental embryology, and in othor zoological subjects. He was among tho carlicst in this country to organizo large classes in various universities for the study of evolution and herodity. His publications include many tochnical monographs and tho following books:-

Evolution, Genetics and Bugenies;
Vortebrate Zoology;
Outlines of Goneral Zoology;
The Biology of Twins;
The Physiology of Twinning.)

Nowmon - 2.

STATEMEN BY PI TT. HORATIO HACEENT NWMAN:
Tho evciutionist stands for and bolicves in a changing world. Evolution is morely the philowophy of change as opposed to the philosopiny of fixity and unchongeability. One must choose between these altornate philosophies, for th ore is no intormediatee position; once admit ε changing world and you admit the ossence of evolution The perticular courses of change or the causos of any particular kinds of change are mattors that the expert alonc is in a position intelligently to discuss. We know with certainty some fer: things about the course of evolution, and wo believe that we have discovered some important phases of the mechanism of evolution, but these are controversial matters and in no way effect the question as to the validity of the principle. Whothes or not evolution may hay claim to rank as a law of neture epends upon the strength, tho coherency, and the abundance of the so-callod cridonces of evolution. THE NATURE OF THE PROOF OF ORGANIC FHOLUTION:

Thore are two distinct types of eviconcer of evolution, one of which has to do with changes that heve occured during past ages, the other with changes that are going on at the presont timo. The evidonces of changes that have taken place in tho romote past must in their very nature bo indirect and to some extent circumstantial, for there are no living eyemitnosses of ovonts so far romoved from the present and there are no documentary records writton in human language. Records of past events are writton, howerer, for him who has learned the language, in the rocks, in the anatomical details of modern spodius, ir the cevelopmont of animals and plants, in their classisication, ard in their geographic distribution

Nownen - 3.
past and prosont. Evidonces that spocios aro changing to-day are quite diroct in charactor, for moro or loss radical horoditary changes have boen soen in the act of taking place, though as yet wo have littlo knovile odge of the causes responsible for them. Tho discovery that spocios are changing at a noticcable rate at tho prosent tinc is in itself strong ovidence that they have changod in tho past, and doubtless in tho same ways and at the same rates of speod as thoso obscrvable to-day; for ovon the conwincod special creationist would hardly claim that species havo romainod immutable sinco their creation only to begin to change during tho presont ora. Little can bo learned about tho large changes involved in organic ovolution by obscrving the rolatively small changes of the presont, for it takes immense periods of time for the larger waves of change to run their courso and reach th oir culmination. For tho study of past evolutionary events wo uso tho historical mothod so succossfully employod in archaoology and anciont history; for the study of prosont evolution we make use of tho methods off direct observation and exporigent. The findings in one field strongly support and supplemont tho other.

When we admit that tho evidences of past evolution are indirect and circumstantial, we should haston to add that the same is true of all other groat sciontific gonoralizations. The ovidoncos upon which tho Law of Gravity aro bascd aro no loss indirect thon aro those supporting the Principle of Evo1ation. Liko all othor groat sciantific gencralizations, the Law of Grevity has acquired its validity through its ability to explain, unify, am rationalizo many obscrvod facts of physical naturo. If cortain facts entiroly out of aceord with the Iaw of Gravity werc to come to light, physicists would bo forcod

Nowman - 4.
eithor to modify the statomont of the law so as to bring it into harmony with tho nowly-discoverod facts or else to substitute a now law capable of mocting the situation. Iaws of nature aro no more or less than candensed statonents about the facts of nature and thoroforo aro valid only in so far as thoy agroe with the facts. The Nobular Hypothozis and its modern rival, the Planotesimal Hypothesis, are both doductions from facts; they both seam to agree with many of tho observed data, but neithor of thom is as yot fully adequate to account for all. In tho fiold of physical ohamistry we had first the Molecular Thoory, then tho Atomic Thoory, then tho Ionic Theory, and now the Electron Theory; each of those has appoared in diroct response to the decessity of explaining new sets of facts, and nono of thom is so woll founded as is tho Theory of Erolution. No one has ever soen a molecule, an atom, an ion, or an olectron; the existence of and the propertios of these entities have been deduced from tho bohaviors of various chomical substances whon subjected to exporimental canditions.

The Principle of Erolution stands in the first ronk among natural laws not only in its rango of applicability, but in tho degreo of its validity, the extont to which it may lay claim to rank as an ostablished lam. It is the one great law of life. It depends for its validity, not upon conjocturc or philosophy, but upon exactly the same sorts of ovidence as do othor laws of nature.

Evolution has beon triod and tosted in evory conceivable
 way for considerebiy ovor half a contury. Vast numbers of biological facto have $b \omega \mathrm{~cm}$ examined in the light of this principle and without a sinele excoption thoy have boen ontirely
compatiblo with it. Trink what a sensation in the sciontific world might bo created if some ono vors to discover even one woll-authenticatod fact that could not be roconcilod with tho Principle of Evolutiont If the enemies of evolution ever expoct to mako any roal hoadway in their campaign they should devote thoir onorgios toward tho discovery of such a fact.

The exact naturo of the proof of the Principle of Evolution is that when groat rasses of scicntific data such as are involved in thoso branchos of biology known as taxonomy, conparative anatcmy, embryology, serology, paleontology, and geographife distribution, are looked upon as the result of evolutionary processes, thoy take on orderliness, reasonablencss, unity, and coherency. Not only this, but oach subscience becomes more closely linked with the others and all turn out to be but different aspocts of tho one groat process. No other explanation of biological phenomen that in any sense rivals tho evolution principle has ever beon offered to the public. This principle cannot be abandoned until one more satisfactory comes forth to take its place. To revert to the thoroughly dis. credited and unsciontific idea of special creation would be as utterly impossible as to revart to the ancient geocentric conception of the universe, according to which a flat earth was thought to occupy the conter of the universe and the sun, moon, and stars to revolve about it.

Let us reiterate thet a theory or a principle is acceptable only so long as it accords with the facts alroady known and leads to the discovery of new facts and principles. Whether or not the Principle of Evolution meets these requirements the reader must juage for himself aftor a porusal of the facts that lic at tho basis of tho principle.

Nowion - 6 .

Tho evidences of evclution that we shall investigate are contained within tho folloring fiolds of biologye

1. Comparative anetomy or morphology, the scionce of structr:e.
2. Taxc my the scichec of clessification.
3. Sorology, the sciome of blood testis.
4. Mmbyology, the suience of developmont.
5. Prioontology, the science of oxtinet life.
6. Georgraphic distribution, the study of the horizontal distribution of spocies upon the oarth's surface.
7. Gonetica, the analytic and experimental study of evolutiomary pracesses going on to-day:

THE INUNDAIENIAL ASSUMPTION UNDERIYIIGG THE EVIDENCES OF EVOLUTION.
A coreful study of tho situstion reveals that the entire fabric of evolutionary ovidencos is woven ubout a single broad assumption:- tret fundamental suructural rosomhisnco signifies blood relationsip; that, genarmily syosking, tic closeness of structural rosoribionco runs ossent an parailel with closenoss of minship. Most biologists worla say that this may once have been on ly an assumption, but that it is now so emply supported by facts that it has bcoone axiomatic. Howoror obvicus the validity of this assumption may bo, it is tho plain duty of one who attompts to justify the evolutionary princizlo to avoid taking stops that are in the least open to sorious criticisit If wo cannoti roly upon this principle we can mako no sure progress toward the proof of evolution.

Tho assumption wo cue now discussing is tantamount to an affirmation of the princtule of horedity: that like tonds to produce like. We contimuall employ this prinoiple in cteryday life. We fully oxpoct tho offsriag of wornows to be

Nownean . P.
sparrows, of robins to bo robins; and if wo should ever find an instano to tho contrary, wo would bo greatly surprised and shocked. Furthormore, we have 1 carned by experience that offspring not only belong to the sme species as tho parents, but tesomble tho paronts more alosely thon they do otrex people. Whenevor we sce two people whoso resumblance is closer then usual we immodiately come to the o oncinsion that such persons are roictione, arobably offspring of the same parchts. Evory one hos had the oxporionce of meoting two porsons so strikingly alike that it is cimost impossible to distinguish thom apart, and the natural assumption is that such porsons cre duplicate or identical twins. Twins of this sort are vastly more closcly related than are brothers or sisters, or oven then are fraternal twins who are usually no more alike than aro brothors and sisters of closely similar ages. It is practically established that duplicate twins are products of the early division of a singlo germ coll. Ho eloser aegreo of kinship can woll be inagined then this, for the two indiriduals b war tho nome rew
 one boäy.

The writor has had an oxcoptional opportunity to determine the exact degreos of resomblance existing between separate offaring dorived from a singlo ogg. It so happons that a peculiar spocios of rammal, the Nine-band od Armadillo, almost always gives birth to four young at a time. These quadruplets are invariably $\alpha 11$ of the same sex in a litter and are noarly identieal in thoir anatomical detailse A study of their embryonic history has proven beyond question that in every case the fur onbryos are produced by the division of a single normally fertilizod ego. Largo numbers of advanced sets of quadruplot fotuses wor ostudied statistically

With tho idoa on detomining the excot dogroc of their rescmblance. An average of a considorablo number of deteminations revealed tho somewhat startling fact that thoir coefficiont of Gorrclation is .93 , which is merely anothor way of seying that thoy aro 93 per oont identical. The romarmble closoness of this rosemblonce may be fully approciatod whon it is realized that tho only structural rescmblancos belonging to this order of closenoss arc thoso existing betwoen tho right and left halves of single indiviauls, and that tho nert order of resomblanco is that botwoon siblings (brothors or sisters), who are only 50 per cont idontical.

This thon is a crucial tost of the validity of the assumption that cloconess of rosomblance is a function of closeness of kinship, for hore we have tio closest approach to identity in connoction with what is also tho closest possible blood reIationship.

Employing the principle of heredity in a somorhat brooder way, and in a way that is hardly likely to be questioned even by the most apptious, we account for tho common posscssion of certain structural poouliaritios by all members of a givon kind or spocies of animal by saying that characters have boen derived from a comon ancestor. It is only a short stop in logic to conclude that two closoly similcur kinds ar spocies of animol have beon dorived one from the othor or from a common spocies. Onco having taken this stop we aro on the road that loads inevitably to an ovolutionary intierprotation of natural groups. If the principle of horedity holds for fratornitios, for races, for species, whore aro wo to amm tho line? It, does not seen reasonabl o to admit thot struetaral resomianocs within the fratornity, tho race, tho species, are accounted for

Nowmon - 9,
as a product of horedity, and to deny that oqually plain resemblances anong tho specios of a gonus or axone the genera of a fauily have a horeditary basis. It is logically impossible to draw tho lino at ony lovel of organic clessification, and say tre.t furdamontel structural rosomblenco is the product of heredity upa to such and such a Iovol, but tinet beyona somo arbiturayly sottlod point horodity ceasos to oporates

myidnions from comparative anatcmy

The foundation stonos of comarative onatony aro the principles of homology and of analogy. The formor impies herodity and the lattor variation.

The Principle of Honology

Any ono who hes at all scriously stadinc comparative anatomy wast havo beon impressod with tho fact that tho animal kingdon cribibits sovoral distinct main tyee of arohitecture, each of which characterizes onc of tho grend divisions of the kingdom. Within each of theso grocit assemblages of animels characterized by a cormon plon of organization thoro aro almost innumorable structural diversitios within the seope of the fundamental plen. These major or minor dopartures form the idoally generalized condition romind one of variations upon a thone in music; no mattor how eđaborato tho variation may be, the skilled rusician rocognizos tho comm theme running through it all. This fundamental unity amidst minor diversity oif form or function is lonted upon as a comon inheritance from a more or loss romote ancostor. In animals belonging to the same group and therefore heving the sore getoci plon of owearation we find many organs having tho emo amanic antin ard the same gencral rolations to otho rerwataro, but with vestry different superficial appocrance and ploying quito dirorse

Newanil - 10 .
different superficial appearanco and playing quito diverse functional roles. Such structures aro saiz to be homcloçous. the fore linibs of various types of backbon od animls (vertebrates): such, for exarple, as that of man, that of tho whale, that of the bird, and that of the horse. The arm of man is by far the most goneralizod of those; it is not far from the ideal prototypic land vertebrate forc lirlb, in that it is not specialized fo for any particular function but is a vorsatilo tool of the brain. Tho flipper of the whale is a short, broad, paddlelike structure, apparontly without digits, wrist, fore arn or upper arm; but on close examination it isw scen to possess all of those structuros in a condition homologous almost bone for bone and muscle for muscle with thoso of the human arm. The wing of the bird, a highly specialized organ of flight, appears suporficially to have nothing in common with the arm of man; but a study of its anatony shows the same bony atchitecture and muscle domplex, nodified rather profoundly for a differont function and with the thumb and two of the fingers greatly reduced or entirely unropresented in the adult stage. The fore leg of the horse is a specialized cursorial appondage, and in accord with this function has but one functional toe with a heavy toe-nail or hoof. Two other toes are represented by the so-called splint bones, mere vestiges of onco useful structures. In other respocts the horse's leg is quite homologous with that of othor land vertebrates. The ovolutiomry explanation of the fact that these several types of limbs (each playing an entirely different role in nature and eack so unlike the other in form and proportions) have the sane fundanontal architecture, is that they have all inhorited these characters from some distant common ancestor. In each case the inheritance
has undergone medification in harmony with the lifo needs of the organism. This of course implies doscont with rodification, which is no moro or loss than evolution.

An equally significant situation comos to light in connection with tho hind limbs of vertebrates. Tho leg of man, a specialized walking appendage, is much loss versatilo than is the arm; yet it is closely homologous with the lattor. The hind limb of the wale is in somo species ontirely wanting in the adult or else is in vestigmal condition. The leg of the bird is decidedly reptilian in structure and is bolieved to have retained in large measure the characteristics of that of the supposcd reptilian ancestors. The hina limb of the horse, though somowhat stronger and h cavior than the forc limb, resembles the latter closely both in form and function. Snakes are typically limbless vertebrates, but the python has small but clarly defincd hind limbs, somewhat roduced in number of bones and almost entirely hidaon beneath the scaly integument.

No other attompt to explain homologies such as those briefly outlined above has been made except that of special creation, and this implies a slavish adhoronce to a preconceived ideal plan together with capricious dopartures from tho plan in variousinstances. A systomatic attompt to apply the special croation concept to all cases of homologies involves one in tho utmost confusion of ideas and leads almost inevitably to irreverence, which is abhorront to ovolutionist as well as to special creationist.

Vestigial Structuros

Nowman - 12.
tures whoso homologues aro found in a functional state in other monbors of a group with a comon architoctural plan. Thus the Find limbs of tho whale and of tho python, the thumb of the brird, the splint bones of the horse, are vostigial homologues of strueturos well doveloped in more goneralized groups of vortobrates. The case of the hind linb vestiges in tho various species of whales may be emphasized as a crucial one. Soveral different degroes of rudimentation aro found in differont types of whalos, ranging from a state in which the pelvic bones and those of most of the leg are clearly recognizable as such dow to one in which these bones aro entirely abe ent in tho adult condition. In tho casos where the bones are bbvious, the situation is just this:-- dex deeply buried beneath the thick cushion of blubber in tho pelvic region there lies a little handful of bones, ridiculously minute in comparison with the giant proportions of the other parts of the skeleton. These bones are immovamle bocause thoir muscular connections are atrophied; they da no sorvice in supporting the frome of tho animal; in short, they cannot possibly function as bones at all. The somowhat peurile argument of the anti-evolutiomist that these vestigal limb bones play somo useful though unknown role, else they would nevor have been croated, cannot soriously be entortained in this case, for what can they make of the fact that some whales entirely lack thoso structures? More difficult oven than this for the spocial creatiomist to explain is tho fact that, ovon in those whales that lack vestigal limb bonos in the adult condition, postorior limb buds appar in the oarly ombryonic period and then slowily atrophy. The cosc just doscribed is in no way excoptional or poculiar. It is, on the contrary, quite typical of a very genoral phenomenon.

Nowman - 13.
of a vory gencral phenonenon.
Vostigial Structuros in Man:
Thore are, acoording to Wiodorshoin, no less than 180 vestin gial structures in the human body, sufficiont to mke of a man a verttable walking musoum of antiquities. Imong these are:-the vermiform appendix; tho abbreviated tail with its set of curd caudal musclos; complicated set of murcios horojogous with those omployed by othoc animals for moving thoir cars, practically funotionless in all but a very fow men; a complute equipment of scalp muscles used by other animals for orecting the hair but of very doubtful utility in man even in tho rare instances when they function voluntarily; gill slits in the embryo, the homologues of which are used in aquatic respiration; miniature third cyelids (nictitating membrancs), functional in all reptiles and birds, greatly reduced or vestigial in all mammals; the lanugo, a completo coating of ombryonic down or hair, which disappears long before birth and can hardly serve any useful function while it laste. These and numerous other structures of the samo sort can be reasonably interpreted as evidence that man has descendel from ancestors in which these organs were functional. Mon has never completely lost these characters; ho continues to inherit them though he no longor has any use for them. Heredity is stubborn and tenacious, clinging persistontly to Vostiges of all that the race la s once possessed, though chiefly concerned in bringing to perfection the more recont adaptive features of the race.

Homology versus malogy:
It is quite common to fiind different animals with certain structures that look alike and function alike but are not homologous. Tho cyo of the octopus, a cophalopod mollusc, has a chorion, a lens, a retina, an ontie norvo, and a general aspect

Nowm - 14.
docidedy like that of a fish. As an optical instrumont it must obviously function in the same manner as does the eye of an acquatic vertebrate; but not one part of the cye off a cephalopod is homologous with that of a vertobrate, Because these two types of cye look alike and function alike, but arise from quite different embryonic primordia adapted to meet a common function, thoy aro known as analogous structures. Thoy are to be sharply oontrastod with homologous structures, which may be widely differont in form and function so long as they arise from equivalent embryonic primordia. Both homoleogies and analogies imply changes in relation to the environment and therefore plainly favor the idea of descont with modification.

Connecting Links:
If one group of animals has been derived by descent from anothor there should be some forms more or less intermediate between the two and with some characteristics of both groups. Many swoh connecting links actually oxist at the present time. Almost evory ordey of animals possesses some primitive mombers that have doubtless evolved at a slowor rate than the ir rolatives and have on that account retained a larger measurc of \because ancestral traits then have the moro typical repesentatives of the group. Thus there is a group of primitsto annelid ${ }^{2}$ worms, representod by Dinophilus, Protordrillusten Pollygordius that serve partially to bridge the gap betwean the two grand aivisions, amelids and fatworms. The case of the several Spocios of Dinophilus is ospccially notewor little animals are so evenly balancod between twocharactoristios of ono phylum and those of tho other the ifano authors

Newran - 25 .
plooe thon amone tho flotwoms, thers anong the annolids, and still othors aro inclivad to placo then in an onomalous sroup by thomselvos. Thero is an interesting gonus of primitito centi... pedos, callod Peripatus, which possosses about as mory wmelid features as eobropod foatures. among verboratos ve heve tho familiar axample of the lung fishes with botin the gille of fishes and lungs homologous with tho se of land vertourotose And finally, wo may montion thoso curious obg-laying mammals, momotromes, of Australia ord Now Zeland, which though obviously mammalian in most respects, pussess, in addition to laying eggs after the fashion of reptiles, many other deci dedly reptilian traits. The reader intorested in following up in more detail this intoresting branch of comparative anatony will fill ind the subject skillfully handled by Geoffroy gmith in a volume entitled Primitive Animels.

Comparative Anatomy is a maturo and well organized
scionce and involvos a vast amount of technical data. No one but a trained comparative anatomist can reasonably bo expected to appreciato the dependence of this subject upon tho principle of evolution. Without cvolution as a guiding principle comparative anatomy would be a hopeless mass of meaningless and disconnected facts; with the aid of the principle of homology, an evolutionary assumption, it has grown to be one of the most sciontific branchos of biology. This may botaken as an illus. tration of the neture of the proof of organic evolution; that whon it is uscd as a working hypothosis or guiding principle, it roally works in theit, it is not only consistont with all of the facts, but lends ajgificanso and intorost to facts that
would otherwise bo drab and di sconnectod. Eridences From Classification:

Tho object of classification is to arrango all species of animals and plants in groups of various degrees of inclusiveness which shall express as closely as possible the actual degreos of relationship cxisting between them. In pursuance of this object we begin by grouping together as one specios all animals that are essentially alike in their anatomical details. As an example of the methods of olassification wo may take the following familiar instance:- the Buropean wolf is a particular kind of animal constituting a species called lupus (the Latin word for wolf) all members of which are more like one anothor than they are like wolves of other sorts, for the reason that they have a common inheritance. There are not a fow other species of wolves, each given a Latin name, and all of these wolf species, including dogs (believed to be domesticated and therefore highly modified wolves), are placed in one genus, Canis. Several other genera of more or less wolflike animals, such as jackals and foxes, aro grouped with the genus Canis, and constitute the family Canidae, the assumption being that thoy aro all the diversified descendants off sone common wolflike ancestor. Other families, such as tho Cat Family (Felidae), the Bear Family (Ursidae) and several othor families of terrestrial beasts of prey, constitute the subordor Fissipedia. These in turn are grouped with the marinc boasts of prey, such as seals, sea-lions, walruses (suborder Pinnipedia) to form the manmalian order, Carnivora. Several other orders of animals with many characteristics in common are combined to form the class Mammalia, which is one of several classes belonging to the

Nownan - 1%
class Mammelia, wioh is one of severarelossos belonging to the subphylum Vortebara, a branch of tho phyium Chordata, A
phylun is ono of tho grand subdivisions of tho onimal kingdom and is rado up of spocios with the samo fmeamontal plan of organtzation the comon featracos of which aro balicured to be derived from a common ansestral type.

Tho undorlying assumption of classificabion is the some that underlio comparative anatomy that degroes of rosomblance kx run parallel with dogrees of blood rolationship, that tho most noarly fdent ical individuals aro most closely rolated and that thoso that b car the last fundamental resomblance to each othor arc oither not genetically relatod at all or clse had a cormon ancestor far back in tho misty past whan animal lifo was in process of origin. We have already shown that this assumption holds good in all cases whero it has beon possiblo to put it to the test. No further justification need bo offered in this place for making use of the only adoquate instrument of classification: the principle of homology •

What iss a spocies

The spocies is tho unit of classification, but there is scrious doubt as to whother species have any reality outside of the minds of tazonomists. Cortainly it is extremely difficult, if at all possible, exactly to draw sharp boundary lines between closely similar spocies. When wo examine a large number of individuals belonging to a given spocies we find that thore are no two exactly alike in all respects. As a rulo thore is a wide renge of divorsity within the limits of tho group wo call a socies and the extreme variants aro ofton so unlike tra typo form the woro it not for the
intorgrading stops botwoon them th woili ofton be adjudged distinct species. Moreover, the spocies of a prosporous genus are so variable that it bccomes an almost impossible task to determine where one spocios ends andancthor bogins, so clos cly do thoy intergrage one into another. ispocies, then, is not a fized and definite asseriblaphe such as one would expect it to bo if spocially croated as an imutable thing. On the contrary, intensive study of any widely distributed species gives the impression of an intricate network of interrolated individuals changing in a groat varioty of ways.

The completed classification of any large froup, such as tho vertebratos, prosonts itself as an elaborately branching: systen whose resemblance to $a \operatorname{trco}$ is umistakable. The phylum branches into subphyla, sone of the latter into several classes, classos into orders, orders into families, families into genera, genera into species, species into varietios. We may compare the phylun to onc of the main branches coming off from the trunk, while the varieties may be thought of as the terminal twigs. This tree-like arrangement is exactly what ono would expect to find in a group descended from a common ancestry and modified along many difforont linos. It is in roality a genealogical trec. If this striking arrangement is a part of the plan of spocial croation it is indoed strangely unfortunate that it speaks so plainly of doscent with modification.

Man's Place in the System of Classification.
There is no greater difficulty in connection with the classification of man than in that of any othor living species. Indood there are scores, even hundreds, of species whose exact

Nowman - 19 .

affinitios with other groups are far less obvious than those of tho human species. Anatomically, the genus Homo bears a striking resomblanco to the anthropoid apos. Bono for bonc, muscle for mascle, norve for norvo, and in many spocial dotails, man and tho anthropoid apos aro oxtronely similar. Homologies are so obvious thet oven tho novice in comparative anatomy notes thon at a glance. Non is many dogroes closor anatomically to the groat apes than the latter are to the truc monkeys, yet the spocial croationist insists upon placing man in biological isolation as a crewture without affinitios to the onimal world. If a man is a creature apart from all animals it is extromely difficult to undorstand the significance of the fact that he is constructod along lines so closcly similer to tho so of cortain animals; that his procossos of reproduction are exactly those of other animals; that in his dovelopment he shows the closest parallolism stop for stop to the apes; that his modes of nutrition, respiration, excretion, involve the same chemical processes; and that evon his fundamental phechological procossos are of the same kind, though difforing in degree of spocialization, as are tho so of lowor animals.

Comparativo anatomists rocognize man as a vertobrate, for ho has all of the characteristic features of that group. He is obviously a mammal, for ho complies with qualifications of that class in having hair; in giving birth to living young after a period of uterine development; in suckling the young by moens of rammary glands; in having two sets of tocth one succeoding the other; in hoving the tecth difforontiated into incisors, canines, and molars; and in many other particulars of

Newman - 20.
skeleton, muscular system, circulatory systom, alimentary system, brain, and other parts of the central nervous system. Among mammals, man belongs to the vell-defined order of Primates, an order anatomically about halfway between the most gencralized and the most specialized of tho mamalian orders. Apart from his extraordinary nervous spocialization, man is a relatively generalized mammal as compared with such highly specialized types as, for example, the whales. The older taxonomists placedman and tho othor primates at the top of the genealogical tree, assigning to him tho central tip of the contral branch as though the goal of all organic evolution were man. Accordingly, those mamals such as the whales, which are last like man, were considered the lowest mamers of the class. There has beon within recent years a pronounced reversal of this anthropocentric point of view, which has resulted in a complete revision with of the arrangenent of mamalian orders, the Insectivora the lowest, the Cetacea (whales) the highest, and the Primates about intormediate in systomatic position.

The Order Primates consists of two Suborders---Lemuroidea and Anthrepoidea. The 1 cmurs or half apes are small arborial animals with somewhat squirrel-like habits but with flat nails and certain other primate characters. They serve to limk up the Primes with the most primitive of the mammalian orders, the Insectivora, which are now believed, on anatomical and paleontological grounds, to be ancestral not only to the primates but to most of the other modern mamalian orders. The anthropoid or man-like Prirates are divided into four distinct families: the Hapalidee or marmosots; the Cercopithecidae or New Wor ld
monkeys; tho Simiidae or anthropoid apes; and the Hominidae or mon. The family Hominidae includes four gonera: The genus Pithocantrropus, represented by tho fragentary romains of an ext tinct Javan ape-man, the genus Paleanthropus, the menus Eanthropus and the genus Homo, including in addition to the eristing spocies, Homo sapiens, several different extinet human species known as tho Dewn Man, the Noaderthal Man, the Rhodesian Mon, and others.

The spocios Homo sapions consists of at least four subspecies or major varieties, each consisting of numorous minor races and admixtures of these. This high degree, of diversity within the specios is evidence of rapid evolution. If a little over four thousand years ago, as the special creationists clain, one man was created and has become the ancestor of all men living to-day, evolution must have gone on at an extrenoly rapid rato in ordor to have producod so many widely difforent races, for thore could scarcely have boon more than one hundrod and twenty generations in that time. If species are believed to be imutable it is difficult to undorstand why man should bo such a diversifiod group as he iss

Evidences Fron Blood Tests.
Tho mothods of classifying animals just outlined depend upon relatively gross criteria (homologies) as compored with the refinements charactoristic of the serological teachnique used in blood testing. This latter method of classifying animals dopends upon chomical similarities and differences in the bloods of various animals, and the basic assumption is onco more that degreos of resemblance parallel degroos of blood rolationship. Rocont investigation has shown thet sertain

Newmen - 22.
materials in an animal's blood are even more sharply specific than aro its visible structural characteristies. Chomical tests of extreme delicacy are usod to reveal resomblances in b blood. Thus, if wo wish to find out what animals aro most like man in blood composition we can find it out in the following mannar: Human blood is drawn and allowed to clot, a process that soparatos the solid materials in the blood from the liquid scrum. The latterwatery fluid contains the specific human blood ingredionts. Small doses of it are injected at twoaday intorvals into the blood vossels of a rabbit. At first the rabbit is sickened by the injection, thus showing a markod raction to the for cign material. In the course of a short time, however, there is no further reaction, and we may conclude that tho rabbit is imunized. What has happened is that some substance has beon developed in the rabbit's blodd which neatralizes the toxic effects of human blood. It is a sort of antitoxin and may be spokon of as anti-human scrum, a matcrial that may now bo usca as a dolicate indicator of blood kinship. When this anti-human serum is mixed with serum taken from tho blood of any human being an immediate and definite white precipitate is formed; when mixed with that of any of the anthropoid apes tho procipitate is similar to that formod with human sorum but less abundant and somewhat slower in apparing. The tests showed a less prompt and less abundant reaction with the blood of 0ld World monkeys, a slight but dofinitc reaction with that of Now World monkeys, and no noticcable reaction with that of lemurs.

Nowhon -

The tests furthor indicated that,if strong enough soluti tions are used and time enough allowed for the precipitate to settle, thore is an umistakeable blood relationship among all mammals and that degroos of rolationship run closcly parallcl with those based upon homologies. Not only this, but not 0 . fow affinities, the existence of wioh had beon only vaguely suggested by comparative matony, are strongly omphasized by blood tests. Onc most femarkable revel ation is that whales, tho most specialized among mamals, are more closely related to the ungulates (hoofed animals), and espocially to the swine fanily, than to any other group of the Class Mammalia-- a diagnosis that had proviously boen made by several anatomists on what appoared to be rathor slonder morphological grounds.

At the prosent time the technique of blood testing for animal affinitios is rather difficult and very few workers have attompted to make use of it. The results so far attained,however, aro so definite and clean-cut that there iss every reason to expect a great future for this new type of evolutionary evicence. Many groups of animals have already been tested and in general the affinitios indicated closely parallel those based on homologies. There is, howeror, no exactness about this parallel; nor could we expect such to bo the case. For that matter there is no exact parallolism between the teeth add the feot, botween the head and the tail. No two systems of an oryanism exactly keep paco in their evolution: one may remain relatively conservative while the other may bocone greatly special ized. Qf all systems, the blood appears to have been the most conservative and to have retained most fully its ancestral charactors.

Nowman - 34.
tests oro so valunil o in revanling rolationships that can scarcoly bo dotormined in any other way.

For more important than any information as to aninal affinities revoaled by blood tests is the fact that the classification of animals based on blood tests is ossentially the same as that based on morphology, suppose, for the sako of argunent, that these two modes of classifi cation had revealca quite contrary arrangements: what a blow to our confidence in the validity of ovolution Convorscly, what a strong support of the evolution principle is afforded by the fact that the two surtems of classification point to the same linos of doscent!

RVIDETTCES EROM MMBRYOLOGY:
Thore should be no sharp aivision botwcen the eridences from Comparative Anatomy and tho se from Mmbyology. Thess two branchos of biology aro inscparable: ore mato be intorpeoted An tho light of the othor, Comparativo anetome ocala vith tho odult structuros of organisms. monevon trone is ony question about homologies of fulire derozoped strur then recourso is had to youngor and etill yonger, stewes fow vihen structures are really homologous thoy tend to be were alosely simiaar the younger thoy aro. Structures that come from the same or similar mbryonic mimordia are by definjear homclogous. Therefore the only certain test of homolosiaes in e. study of embryolosy.

It is necossery to bear in mind that an ficitioval is not merely his adult condition; that a spoci es is nct mily dofined by a deseription of its adult charactorit tas. We spocies characteristice include tho se of the obe ant the sperm,

Nowren - 25.
the cloavago pattem, the particular modos of gastrulation and of furthof differentiation. In brief, the species isf fully defined only by a full description of its entire ontogeny. Vory closely rolated species keop step nearly all the way through their ontogenios and diverge only taward the end of their courses. Distantily related forms diverge comparatively early in their dovelopmental paths; while unrelated forms may have little or no thing in common from the beginning.

Tho most advenced groups of organisms travel a much longer journey bofore reaching their destination than do organisms of lower status. In many instances certain carly stages in the dovelopment of an advanced organism resemble in unmistakable ways the ond stages of lass advanced organisms. Thero isf in fact, in the long on** ontogeny of mombers of higher groups, a sort of rough-and-ready repetition of the characteristic features of many lower groups. This fact has so improssod some biologists that they have cmbodicd it into a law, the so-called biogonetic law; that ontogeny recapitulates phylogeny. In loss technical language this means that the various stages in the development of tho indididual aro like the various ancestral forms firdm which the species is descended, the earliest embryonic stages boing like the most romote ancestors and the latter stages like tho more rocont ancostors. In still other words, the concept may bo stated as follows: the dovelopmental history of the individual may be regarded as an abbreviatod resume of its ancestral history.

In tho first placo it is obvious that no ombryonic stage can be in any real sonse the cquivalent of any adult

Novman - 26.
anocstrox. Tro most we con affirm is thet while some ombryonic chonators of tho higher group strongly remind us of some adult focturos of lowor gioups, tho tout onsomblo of the former is not at all closely similar to that of the lattor. In the second placo, it should not be forgotton that the embryonic and larval stages of orgonisms have much more pressing domends upon them than that ofrecording their ancestral attainments-- they must adapt thomselves to their surroundings if thoy aro to survive. As a result of this pressing nocossity many larvac and even ombryos are so profoundly modified in adaptive voys that their ancostral characters arc largely obscurcd. Various larval or fetal organs comonly fumish tho outstanding characteristics of dovelopmental historios, and theso purily tomporary organs not only tell no story of oncestries but froquont fy so mask the ancostral story as to make it almost indeciphorable. In the third placo, difforent systons of orgone devolop at differont rates, so that when one systom has roached on advanced state of diffor ontiation ancther syotom may be atill in tho primordial state. Thus, in the dovelopnont of fishos tho norvous system is far alonc its courso of acvelomont befor c the circulatory systom has even boguh to diffcrontiato. Lt such a stage as this tho ombryo is obviousiy not oquivalent to any adult dincostor, for an organism with so discordont an organization could not survive.

In spito of its foults and limitations, hownver, tho idea that ontogony tands to ropoct phylogon, if usod intolligently and not ovor-opaiiod, is a tery usoful one. oxrmisms irhorit not only thoir alllt characters from thoir ancestors, but also
thoir genoral devolopmontal pattorns. It is ther of ore inevitable that many foetures that havo bocn outgrown or suboriinated in modern types should be found in a state more nearly ancestral during the ombryonic stages. And especially is this the case Whon particular systoms are studied separately. Thus, we find that the human circulatory system develops through a series of stagos that are much like the adult conditions of a sories of ascending vertebrate classos. Tho hart difforentiates from a sheot of mesodorm lying boneath tho pharynx. It has at first the form of two noarly straight tubos, which soon fuse for part of their length to form a singlo tube divided at the two ends into two tubes. Later the sincle tube differontiates lengthwise into two cavitios, the auricle and the ventricle, and is now in the stage equivalent to that of an adult fish. The auricio next divides into two chambers, thus resembling that of an amphibian. Finally the ventricle subdivides also, giving rise to the four-chambered hoart characteristic of mamals. The main arteries and veins of tho hoad region are at first laid down with roferonce to what are known as the branchial arches, the structural francwork of the branchial or gill apparatus of gquatic vortebratos. Later, the whole architocture of this systom bocomes profoundly modificd in adaptation for iung respiration. While the arterios and veins are in the fish-like condition thero appear at the anterior end of the body in the prospective nock rogion four pairs of crevices, gill slits, which in fishes open directly into the pharynx and furnish a surface for gills. In the human cmbryo, howovor,these clefts

Nownn-28.
nover broak through, but, aftor porsisting for some timo without pleving any uscful rolo, gradually disappoar. Tho only porsisstont rosiduc of the gill slits is tho Bustacocn tabo, which connocts the pharynx with tho miade car. Nover at any time do tho gill slits function in a rospiratory capacity, for they nover possess any branchial tissue. Only one intorpretation of these transitory gill slits of man can be seriously ontortainod, nancly, that, although thoso stmeturos aro inheritou from the early aquatic ancestry, adaptive demands have causod th cir suppression in fevor of more useful structures. Inheritance causos their appoarance; lack of function provonts thoir devolopnont and causes thoir disappearance or modification. Nothing is to bo gained by a multiplication of parallolisms such as tho above. Suffice it to say that the nervous syston, tho alimontary systom, the wrogenital systom and other systoms go through stages similar to tho se deseribod above and that these rosemble adult stages of lower classes of vertebrates. The embryology of man is now pretty thoroughly known in spite of tho great difficulty of obtaining the carly stages. Step for stop it is almost precisely liko that of other primates, especially like that of the anthropoids, and it is only in the latest stages that it takes on distinctly humon characteristics. This is not equivalont to saying that tho export embryologist is in any doubt as to the diagnosis of a humen ombryo no mattor how carly the state, for thoro aro specific foaturos about all embryos from tho ogg stage on to the end of dovelomont thet may be distinguishod by any ono sufficiontly vorsod in tho subject. In spite of these specific differonecs, however, there can be no question that the embryology of man and that
cf any of the anthropoid apes show tho closest of resomblances at overy stafc and divorge sharply only in the late stages of prenatal life. So close a rosomblance in devolopmontal histories is found only in species that are members of the some ancostral stock, for they have both inherited the charactoristic featuros of their doveloprent fron their comon ancostors.

The evidonce of hum evolution as dorivod from a study of embryology is in no wrise excoptional; on the contrary it is quite typical and may bo taken as indicating that from the dovelopmental stand point man is atono with othor animals.

EGIDENCES FROIL PALEONTOLOGY:

Paleontology is the science of ancient life. Its matcrials are the more or less completely preserved remains of animals and plants that once lived. Wo call those romins fossils. Fossils are roal; thoy connot be explained away. If evolution has taken place and samples of every specios that has lived were preserved for study j.t would still be a task of immenso difficulty to work out the pedigrees of all types of organisms now living, and we might still be largely in the dark as to the causes of the obsorved changes. As it is, we havo fossil remains ofperhaps only about one out of each thousand extinct species, a mere random sampling of the types that prevailed during the various past ages. Considoring how many factors have been at work to prevent fossilization of large groups of species and how erosion and motamoriphosis have worked togethor to destroy those fossils already preserved, we marvel that our fossil record is sufficiently complote to tell any sort of sequential story. The fact is that tho rocord is surprisingly $f u l l$ and rich.

Nownon - 30 .

Age of the Darth:
According to the most recent computations besed on the rate of radium manation, $1,000,000,000$ years havo olapsod since tho oarth attainod its prosont dianeter. Various estimetes as to the time since the first lifo appoared upon the surface of the globe rone from $50,000,000$ ngears to about ton times that figure. TVen the lowost figure gives ample tine for any sort of evolutionary change, no matter how slow. The Earth's Strata as Time Markers

The crust of the oarth is arrangod in a sorics of horizontal strata of varying thicknoss. The lowest lajers are obviously the oldost, except in a fow localitios whoro breaks and tilts havo occured. Bron in the most disturbed mountaincus regions it is en oasy task for the geologist to determine the original order of tho strata.
(1) Nonc of the animals of the past are identical with thoso of tho prosent. The noarest rolationship is botwoen a fow spocios of the past which have been placod in the seme genera as those of to -day.
(2) The animals and plants of oach geologic straturn are at least generically different from those of any other stratum.
(3) The animals and plants of the oldest geologic strata represent all of the existing phyla except the vertebrates, but tho roprosentatives of the various phyla are rolatively gencralizod as compared with modern roprosentatives of the sane phyla.
(4) Thero is a gredual progression toward more highly specialized forms as one procecds from lowor to higher strata.
(5) Man groups of animals roachod the climax of their

Notan - 31.

spociolization long ages ago and havo becomo extinct.
(6) Only the loss speciolizod relativos of thosc most highly spocializod typos survived to bocone the progonitors of the modern representatives of the group.
(:) It is comon to find a new group arising noar the close of some goologic poriod whon vast climatic changes wore taking place. Such an incipiont group alnost r cgularly becomes tho dominant group of the next period, presumably becausc it arose in response to tho now conditions that accompaniod the change from ono period to anothor.
(8) Tho ovolution of the vortebrato classos is more satisfactorily shown than that of any other group, probably because it arose within the poria which is characterizod by an abundant fonsil record. Of the vortobratos, the mamals are bost ropregented and show the most completo fossil pedigreos; this, because they are the most rocent in origin and thoir remains have been loast disturbed.
(9) Many practically complete fossil pedigroos have been worked out, connecting modem specialized types with simpler and more generalized ancostors. Such pedigrees have been worked ott for the horsc, the olephant, the cancl, the rhinocoros and other equally specialized modern types. A single examplo of this type of ovidence will bo given: that of the horse. Many other pedigroes heve beon worked out that aro oqually comploto and no less significant.

Podigree of the Horso
As rocordod by Dendy, the courso of evoluijon of the horse

Nowran - 32.
family (Equidac) "has ovidontly boen detcmined by the devolopment of cxtonsive, dry, gress-covorod, open plains on the Anerican continent. In adaptation to lifo on such areas structural modification has proeeodod chiefly in two directions. The limbs have boconc greatly longatod and the foot uplifted from the ground, and thus adapted for rapid flight from purauing onomies, whilo the middlo digit has bcome mo ro and moro important and the othors, together with the ulna and the fibula, havo gradually disappored or beon roduced to more vestiges. At the same time tho grazing mochanism has beon gradually perfected. The nock and head have beconc olcngated so that the animal is able to roach the ground without bending its legs, and tho cheek teeth havo acquired complox grinding surfacos and heve groatly incroased in longth to compensate for ineroasod rate of wear. As in so many other groups, the ovolution of these special charactors has been accompanied by grauad increasc in size. Thus Fopippus, of Lower Docene times, ppoars to have been not nore than eleven inches high at the shoulder, while existing horses moasure about sixtyfour inches, and numerous intermediato genera for the nost part show rogular progross in this rospoct.

Wall these changes have taken place gradually, and a beautiful sorics of intormodiate forms indiceting tho difforent stages from Eohippus to tho modern horse have boen discowerod. The sequenco of these stages in geological time oxactly fits in with the theory that cech one has beon deriwod from the one next bolow it by more perfect adaptation to the conditions of life. Numorous gonerat havo been described, but it is not neeessary to montion moro than a few."

Nomman .. 33

Tre forst indisputable horse-like anima appoars to havo buch fameothorium of tho Inow Roceno of Durope. Another Iower Zoomo genu is Dohipuc, mich lived in Horth imerica, probably howeng migroted noroas from Lsia by tho Alaskan land connection. In Dohippus tho for ofoot had four hoofod toos of nowrly equal sizo, tho homolozuo of tho thumb having boen reducod to a vestige. In the hind foot the groat too had entiroly disappoared and the littlo too hai boon reducod to a splint bone, Thon cone Orohippus of the Uppor Doceno, Mosohippus of the Iowor Miocenc, Prothohippus of tino Iowor Pliocone, Plichippus of tho Upper Pliocono, and finally, Equas of the Quarternary and Rocent. This history, in so far as it concoms tro charactors alrcady describod, furnishos all of the intormediate conditions and perfectly connects the horses of tho pest with thesc of the present. One could hardy ask for a elecror or moro conclusive story of ovolution than this, and this is only onc of meny similar cases.

The Fossil Podigrco of Mon
There is nothing poculiar or oxaoptional sbout the fossil rocord of men. It is considombly less comploto than that of tho horse, tho samcl, tio olophont, and other puroly torrostrial mamals, but it is far moro comploto then thot of birds, bats, and sevoral typos of arboroni mamols. When has roon said by the anti-cvolutionists wout the fregnontary nature of the forsil rocord of mon, but many othor orimals havo lott tracos far loss roadily dociphored ond roconstruoted.

Tho outatanking fact beought out ber a stuing of human
most expert tostimony availablo, the oldost fossil in the human series is about half a million years old; and even this estimate makes man a recent product of evolution as compared with many contomporaneous mimals. The oarliost fossil romains of the prosent spocies of man (Homo sopions) hove been very conservativoly estimatod as 25,000 yours old, whilo other species of extinct man date back to a period at loast 100,000 yoars ago. In addition to soveral species of the gonus Homo, anthropologists distinguish theree other gonera of the man family (Hominidac): Pithecanthropus, Paleanthropus, and Eoanthropus, all more primitive than any members of the genus Homo. A brief, but frank, statoment about each of these links in the human pedigree is all that is nocessary for our purposes.

Pithocanthropus orectus.
This is the so-callod Java Man, formerly called the Ape Man or Hissing Ifink, but now adjudsed to be definit ely human. The fossil romins consist of a complete calvarium or skull cap, throe tecth, and a left thigh bone. These were scattered over twenty yards of space and werc discovered at different times. There is no proof that theso remains belong to the same individual or even to tho same species, but they are all human in their anatomical characters and they occured in fossilbearing rock about 500,000 years old. Many pages of scientific romance have beon writton about this species; all sorts of more or less justifiablo pictures and models of this hypothetical species have been published. It is thonrefreshing to read the coldy scientific statonent of Gregory:
"Tho association of gibbonlike, skall-top, modernized human femur and subkumen uppoc molars with roduced posterior

Howmen - 37
mojoty, if corroctly assignod to ono animal, may, perhaps, define Ethoomthropus as an carly sido branch of tho Hominidae, which had alcoady been driven away from the contor of dispersal in Contral haia, by pressure of highor races. But whatever its procjso systonatic and phylogenetic position, Pithocanthropus, or eron its constituent parts, tho shall-top, the fomur and tho molars, sevorally and collectivoly tostify to the closo rolationship of the late Tortiary anthropoids with the Pleistocone Hominidae."

Paleanthropus Hoidelborgonsis

This fonus and spocios, comonly kown as the Heidolberg Man, is based solow upen a singlo low or jawin an ezcellont stato of prosorvation, with all tooth in place. The strong points about this find arc, first, that it was found in a stratum whese age had been well established; and second, that its discoverer ranks anong tho lading experts in the field. The age of this venoroble rolic has boon dotormined as at least 400,000 ycars, a littlc more rocont than Pithocanthropus. Tho jaw is very primitivo, heavy, and clunsily constructed as comparod with that of modern man. It lacks tho clin prominonce, as does the jow of the gorille. Tho tocth are strictly human, though rathor larger than thoso of modom man. This apelike jaw with human toeth forms an authentic link in the serics connocting man with tho anthropoids.

Boanthropus Dawsonis

The most ancient Dneliah human relic has boen called the Dawn Men of Piltawn oring to tho fact that the skull fragments had been badly comecod wa scattored by workmen before they came into soloctiric hands, there has been a groat deal of controversy as to thoin significance. Until the ex-

Noman - 38
perts arrive at an agroonent about this type it might be well for others to reservo judgment. There can be no doubt as to the fact that thoso romains show a curious adrixturc of simian and human charactoristics, tho jaw and toeth boing ovem more simian than that of tho Heidelberc Man, while the skull, though primitive, is distinctly human. Tho age of the Dawn Man is placed at about 200,000 to 300,000 years.

In striking contrast with the fragmentary charactor of the remains just describod are thoso of throo distinct spocios of the genus Homo, which are now to be briefly charactorized.

Homo neanderthalensis
The well-cstablished race known as Neanderthal Man is represented by many individual skeletons of varying degrees of completonoss and showing a considerable rango of diversity. Specimons havo been found in France, Spain, Belgium, Germany, and Austria. This spocios of primitive man was of low stature, about five foet three inches in the males and less in the fomales. The posture was somewhat stooping. The relatively large head was long and flat, with apelike brow ridges and scarcoly any forchoad, and was borne on an immensely muscular neck in such a way that tho face was thrust forward in simian fashion. The lower jaw was heavy and lacked a chin prominence. The tecth were of a type known as taurodont, adapted to a coarse vegetable diet and quite different in structure from those of modern man. The brain of this ancient homo-neandorthalensis was large and specialized in some parts, but deficient in those parts associated with the highor montal functions.

There can be no question that Neanderthal Man was much
more primitive, nore simian in organization, than modorn man. Hoport opinion, as expressod by Keith, looks upon him as "a soparate and peculiar specios of man which died out during or soon after the Movstorian poriod." This dates him back to about 50,000 years axo.

Homo rhodesiensis
Rhodesian Man is represontod by a perfect skull and a nearly perfect lower jaw, the tibia, both ends of a femur, collar bone and parts of the scapula and pelvis. Part of tho uppor jaw of a second specimen was found in the seme locality, tho Broken Hill mine in northern Rhodesia. This species is largely of technical intorest, and neod not be doscribod in detail. Suffice it to say that in some respocts it was as pramitivo as Neanderthal Man, but in other respects showed distinct tendendies toward the modern condition. Anthropologists havo as yet not reachod a decision as to the exact taxonomic status of Rodosian Man, nor has its ago been definitely detemined.

Homo sapiens.
The carliest fossil evidence of the existence of our own specics date back to about 25,000 years ago. At that time there livod a romarkable rece, known to us as Cro-Magnons, a rade said to be the most perfoct physically of which we have any knowledge. Five ossontially complete skeletons form the basis of tho type description. This tall, strong, obviously intolligent, and artistic race, was differont in sevoral inportant particulars from any modern raco. A detailed description of his characteristics would tako us too for afield. Our chiof interost in this raco as that j.t sorves to omphasizo the antiquity of our own specios.

Newnan - 40 .

In conclusion it my be said that the fossil ovidonces of man's ancestry are neither rich nor poor; that anthropology is a comparatively youthful science; the that now discoveries in the ficld aro being mace at a vory satisfactory rate. EVIDINCES FROM GIORGRAPHIG DISTRIBUTION

Just as paleontology deals with the vertical distribution or distribution in time of species, so georgraphic distribution deals with their horizontal distribution upon the carth's surface at any given period of time. Gcorgraphic distribution is a sort of cross-section of vertical distribution, giving a picture ff tho complex ovolution of organisms at a givon moment in the process. Explorers and collectors have amassod a vast amount of data as to tho present and past ranges of animals and havo mapped out the distribution of the majority of known species. A composite map of the geographic distribution of all known species would be the most intricate picture puzzlo imaginable, and it would be almost impossiblo to make sonse of it. A study of the distribution of limited groups, however, should lead to some reasonable explanation of their interrelations. Obviously animals are not distributed strictly according to climatic conditions or habitat complexes, for a given climate in one part of the world is associated with an ontirely difforent fauna from a practically imentical climate in another part of the world. Moreorer, animels are not always or even very frequently 10cated in those parts of the world that would offer them the best possible lifo conditions. This is bornc out by the fact that not a few ani这als when taken out of the normal range and transferrod to a distant rogion, thrive much better thon in thoir
nowno torritory. Thus Jurapon rabbits, whon carried to Austoculia, throro and multiplied b gund all expoctation till they bocome a post. Again, as my bo easily obsorved, the English sparrow socns to find Anorica much nore congonial than the British Islos. If animals aro not distributod according to habitats, hww, thon, con wo cocount for thoir distribution? It is not at all likely that species retain tho some rangos for long periods; they aro continually chonging their locations. Wo know, also, that tho likeliest plecos to look for two closoly similer species aro adjacont torritorios, soparated by goocraphic barriers. A study of the distribution of the spocios of a large gonus usually reveals the fact that tho most goneralizod or type species occupies the contral part of the arec ond that the most specialized spocies oceupy outlying aroas adjacent to or coninected with the main range of tho gonus. Toking thoso and rolatod facts intc consideration, we are ablo to offor as on explanation of the distribution of groups of allied spocies that a parent spocies originates in one place, mutiplios, and tonds to migrate contrifugally in all directions, nocifying as it goes to fit now conditions. Some of the extreme migrants becano isolated from the main body of the species and, no longer interbreeding with them, bocone at first wellmarked local varieties and in time new species. The abovo is the usual hypothesis omployed in oxplaining geozraphic distribution, and it obviously implios ovolution. Whon usod as a moans of unraveling the intricate tongle involvod in the distribution of specios, it has throrm a flood of light upon siturcions athoxise quito incxplicable. In brief, tho evolution moothosis retionalizos geogrophic dis-

Hewman - 42.
tribution, makes a science of what was formorly a hopeless jumble, and has thus proven itsolf a vayable sciontific agent.

Tho Inhak tants of Occonic Islanes
Occanic islands are small isolatod bodies of land of volcanic origin, far from continents. They are the tops of oceanic mountains. 111 such islands have their inhabitants, and a study of these should furnish a crucial test of the validity of the rival theories of special croation and of evoIution. Both croationists and evolutionists agree that these islands must have obtained their populations from continontal bodios. If thon tho islond spocies are identical with those of tho continent from which they have beon derived, there is no reason to believe that evolution has taken place; if, howover, thoy aro difforont, the degree of differonce should be an exact measure of the amount of evolutionary change that has taken place. What are the facts? Practically all species of animals inha biting occanic islands are types that are capable of transportation in the air during storms or on floating debris. All species belong to the faunistic groups characteristic of tho most availablo continent, but the species are for the most part peculiar, thatis, difforent from species anywhere else. They may belong to the same genus or faraily as do those of the continent, but they are at least specifically, frequently genorically, differont from the latter. Such being the case, we are forced to conclude that new species have originated under island conditions. The extreme case is that of the island of St. Felena, 1,100 miles from Africa. On this little body of land there are 129 species of beetles, all but one of

Nowman - 43

of which aro peculiar. The species belong to 39 genera, of which 25 aro peculiar. Thero are 20 specios of land smils, of which 17 are peculiar. Of 26 species of ferns 17 belong to peculiar genera. The Azoces,Bermudas, Galapagos Islands, Sandwich Islands, a 11 toll much the same story, but their populations are not quite so peculiar.

EVIDENCES FROM GZNEIICS

Genotics ay be defincd as the experimental and analytical study of Variation and Herodity, the two primary causal factors of organic ovolution. As such, genetics aim not so much at furnishing evidence of the fact of evolution as at discovering its causes. Incidentally, however, when man takos a hand in controlling evolutionary processes and actually observes new hereditary typos taking origin from old, he is observing at first hand the acitual processes of evolution. We shall merely say that the geneticist is an eye-witness of prosent-day evolution and is able to offer the most direct evidence that ovolution is a fact. SUMMARY OF EVIDEICES

All of the lines of evidence presented point strongly to organic evolution, and none are contrary to this principle. Most of the facts, moreover, aro utterly incompatible with the only rival explanation, special croation. Not only do these evidences tell a straightforward story of evolution, but ach onc is entircly consistent with all of the others. Furthermore, each line of evidence aids in an undorstanding of the others. Thus mbryology groatly illuminates comparative anatomy and classification; goographic distribution is aided by paleontoloyy,

Mramen - 44 .

an. ico vorsa; blood tosts and classification throw mutual licht ta ono upon tho othce The ovolution principle is thus a great wiffing and integrating sciontific concoption. Any conception that is so far-roachine, so consistont, and that has lod to so much advence in the understanding of nature, is at least an extronoly valuoble idea and one not lightly to bo cast aside in case it fails to agroo with one's projudices.

